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The history of polyglutamine diseases dates back approximately 20 years to the discovery of a polyglutamine repeat in the androgen
receptor of SBMA followed by the identification of similar expansion mutations in Huntington’s disease, SCA1, DRPLA, and the
other spinocerebellar ataxias. This common molecular feature of polyglutamine diseases suggests shared mechanisms in disease
pathology and neurodegeneration of disease specific brain regions. In this review, we discuss the main pathogenic pathways
including proteolytic processing, nuclear shuttling and aggregation, mitochondrial dysfunction, and clearance of misfolded
polyglutamine proteins and point out possible targets for treatment.

1. Introduction

Polyglutamine (polyQ) diseases are inherited, fatal neurode-
generative disorders caused by an expansion of a coding trin-
ucleotide (CAG) repeat, which is translated to an abnormally
elongated glutamine (Q) tract in the respective mutant pro-
teins. There are nine known polyQ diseases: dentatorubral-
pallidoluysian atrophy (DRPLA), Huntington’s disease (HD),
spinal-bulbar muscular atrophy (SBMA), and six spinocere-
bellar ataxias (SCA 1, 2, 3, 6, 7, and 17). Except for SBMA,
which is X-linked, members of this disease group are inher-
ited in an autosomal dominant manner [1]. It also appears
that the shared expansion of polyQ tract confers some shared
neurodegenerative pathways on the diseases. Although the
region of the brain that is affected differs according to
each disease, the observed cell death is aggravated by the
trafficking of the protein to specific cellular compartments
where it can increase the rate of aggregation. Both nuclear
and cytoplasmic aggregates are present in polyQ diseases and
contain parts of the respective disease proteins, ubiquitin, and

several important homeostatic proteins [2]. The recruitment
of ubiquitin, heat shock proteins, and proteasomal subunits
into these aggregates implies that protein quality control
mechanisms such as the ubiquitin-proteasome system (UPS)
are involved in polyQ pathogenesis [3]. It has also been
discussed that the cleaved protein is more toxic than the full-
length variant. An initial proteolytic cleavage of the respective
disease proteins may generate a fragment containing the
elongated polyQ stretch which is more aggregate prone and
hence more toxic for the cell [4, 5]. What is also interesting
about this group of proteins is that although they are all
ubiquitously expressed in embryonic stages and adulthood,
the pathology of the disease only occurs in neuronal cells
[6]. One possible explanation for this phenomenon is the
high energy demand of neurons and hence their dependency
on oxidative energy metabolism. This points dysfunctional
mitochondria as a shared mechanism of neurodegeneration
[7]. In this review we focus on what we consider to be the most
important pathways in pathology of Huntington’s disease
and spinocerebellar ataxias: proteolytic processing, nuclear
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shuttling and aggregation, mitochondrial dysfunction, and
intracellular protein degradation systems (Figure 1).

2. Proteolytic Processing

Early studies of the common characteristics of polyQ diseases
revealed that small fragments of mutant proteins containing
the expanded polyQ stretch harbored cytotoxic characteris-
tics [8, 9]. Proteolytic cleavage, the proposed source of these
breakdown products, was suggested as an early or initial step
in the molecular disease development. This mechanistic con-
cept is commonly known as the toxic fragment hypothesis [10].
The presence of proteolytically derived fragments of mutant
proteins was reported for all polyQ diseases introduced in this
review, namely, SCA 1 [11], SCA 2 [12], SCA 3 [13, 14], SCA 6
[15], SCA 7 [16, 17] SCA 17 [18], and HD [19, 20]. Currently,
several classes of endogenous proteases have been linked to
the proteolysis of polyQ proteins including the groups of
caspases [21-24] and calpains [20, 25-29].

For SCA 1 and 2, neither an inherent cytotoxicity and
aggregation propensity nor a clear impact on pathology is
evident for mutant protein fragments, demanding further
characterization [11, 12]. For ataxin-2, the disease protein in
SCA 2, mutant fragment constructs were shown to exhibit an
aggregate formation potential in vitro [30], but further studies
revealed a decreased cytotoxicity of N-terminally truncated
mutant ataxin-2 compared to the full-length protein [31].
Even so, for the majority of polyQ diseases a correlation
between proteolytic processing of mutant proteins and dis-
ease progression is generally accepted.

In a SCA 3 cell model, the expression of a fragment
of ataxin-3 containing an elongated polyQ stretch induced
apoptosis and cell death as well as a severe ataxia in a mouse
model, showing a more rapid manifestation of a SCA 3-
reminiscent phenotype when compared to mice express-
ing full-length mutant ataxin-3 [8]. In addition, polyQ-
containing ataxin-3 fragments were shown to form aggregates
on their own and were also able to recruit full-length protein
into the insoluble inclusions [32, 33]. In HD, in vitro data
showed that the progressive truncation of mutant huntingtin
(mHtt) protein and the length of the polyQ expansion
correlate with the aggregation propensity and an increase in
apoptotic stress [34, 35]. Mouse studies revealed a similar
result when animals expressing the polyQ expanded exon
1 of huntingtin (Htt) showed a progressive neurological
phenotype recapitulating characteristics of HD. This sug-
gests that the N-terminal polyQ-containing portion of Htt
was sufficient to induce neurodegeneration in vivo [9]. An
important observation is that these disease fragments were
detectable in human HD and SCA 3 brain and lymphoblasts
[13, 20, 36] and were found to be an important component
of neuronal intranuclear inclusions [37-39]. Similar results
were retrieved from two mouse models of SCA 7 expressing
polyQ expanded ataxin-7. In brain tissue of these animals N-
terminal ataxin-7 fragments were observed which appeared
in nuclear aggregates in correlation with onset of the disease
phenotype [16, 17]. As with much of the current research on
polyQ diseases, not all observations are in agreement. An
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HD mouse model expressing a polyQ expanded fragment of
Htt encompassing exons 1 and 2 exhibited neither neurotoxic
effects nor an HD phenotype, despite the presence of nuclear
inclusions [40]. This illustrates that not all fragment species
feature neuropathological characteristics. Another notewor-
thy investigation made on a SCA 3 gene trap mouse model
showed that expression of a fusion protein comprising f3-
galactosidase and the N-terminal portion of ataxin-3 without
the polyglutamine tract led to the formation of cytoplasmic
inclusion bodies and to a phenotype reminiscent of the
neurological symptoms observed in SCA 3 mice and patients
[41]. Furthermore, C-terminal polyQ fragments of the alA
calcium channel, disease protein in SCA 6, showed a polyQ
independent cytotoxic nature. However, the expansion of the
polyQ stretch within the fragment resulted in its increased
resistance to proteolysis entailing an accumulation of this
toxic species [15].

The first proteases which were shown to cleave polyQ
expanded proteins were caspases. This family of cysteine
proteases is associated with apoptotic pathways and inflam-
mation but is also known to be involved in a variety of other
cellular functions like cell proliferation, differentiation, and
migration [42, 43].

Caspases are involved in cell death mechanisms and an
increase in activation of caspases has been detected in the
course of polyQ diseases. Presence of apoptotic cell death and
caspase activation was shown in human HD brains as well as
in mouse and cell models of HD [44-51], although this goes
against previous studies that did not find apoptotic nuclei in
the R6/2 mouse model of HD [52]. Cell death pathways and
caspases were also reported to be switched on in other polyQ
diseases like SCA 3 [8, 53] and SCA 7 [54, 55]. In the case
of SCA 7, activated caspase-3 was recruited into inclusions in
cell culture and human SCA 7 brain, and its expression was
upregulated in cortical neurons [54]. In general, inhibition of
caspases has been shown to ameliorate disease progression
and phenotype in HD mice [44, 49].

Within the polyQ diseases reviewed, the first discovery
of caspase-mediated cleavage of a disease-causing protein
was made for HD [21]. This in vitro study indicated a
specificity of caspase-3 for huntingtin and a polyQ expan-
sion dependent cleavage. Further studies identified caspase-1
dependent cleavage of huntingtin and confirmed caspase-3-
mediated fragmentation, whereas caspases-7 and -8 appeared
not to cleave full-length huntingtin [22]. Moreover, caspase-3
selectively processed expanded huntingtin and resulting N-
terminal fragments formed cytoplasmic and nuclear inclu-
sions [48]. Direct evidence for caspase-mediated huntingtin
cleavage was gained from early stage HD postmortem human
tissue and transgenic mice. In these brain tissues, not only
mutant but also wild type huntingtin are substrates for
caspase cleavage. The early disease stage of these samples
suggests that caspase-mediated proteolysis of mHtt may
precede neurodegeneration [23].

Multiple studies have begun to elucidate the specific
caspases responsible for cleavage of huntingtin. A broad
inhibition of caspases with Z-VAD-FMK in clonal striatal
cells led to a reduction of specific huntingtin fragments and
an increased viability without changing levels of inclusions,
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FIGURE 1: A model of the common molecular mechanisms behind polyglutamine pathology. Schematic illustration of the intracellular fate
of the polyglutamine (polyQ) expanded protein, from the unprocessed mutant protein to a protein aggregate. The mutant protein (a) is
proteolytically processed by endogenous enzymes (b) forming toxic fragments (c). These fragments form aggregates in the cytoplasm (d).
Alternatively, toxic breakdown products can translocate into the nucleus (e) and generate nuclear aggregates (h) by forming intermediate
species (f) and sequestering further vital proteins (g). Accumulation of polyQ species can damage important cellular components and
lead, for example, to mitochondrial dysfunction (i). The visualized pathways point possible sites for therapeutic engagement: prevention
of proteolytic events (I) can decrease levels of toxic fragments. Alteration of nuclear shuttling (IT) and modulation of aggregation (III) can
ameliorate the detrimental effects of toxic species. As polyQ expansions lead to misfolded proteins, structural refolding assisted by enhanced
chaperone activity (IV) might be beneficial. An increased degradation of polyQ proteins and aggregates via proteasomal (V), lysosomal (VI),
and autophagosomal (VII) pathways can reduce the amounts of toxic species inside the cell. Finally, attenuating the consequences of polyQ
toxicity (VIII), like impaired mitochondrial function, can improve the cellular viability.

whereas treatment with the caspase-3 specific inhibitor Z-  strong relevance of cleavage at the 586 amino acid caspase-6
DEVD-FMK reduced aggregates without changing cleavage  site of huntingtin. Removing the caspase-6, but not caspase-
or increasing cell viability [46]. The generation of mouselines 3, recognition sites in mHtt appeared to be sufficient to
expressing caspase-3 and caspase-6 resistant polyQ expanded ~ protect from neuronal dysfunction and neurodegeneration
huntingtin by eliminating specific cleavage sites unveiled a  in vivo [56]. A further study showed that caspase-6, but not



caspase-3, is activated before the onset of motor abnormal-
ities in murine and human HD brain. Caspase-6 activation
correlated directly with the size of the polyQ expansion and
inversely with the age at onset [56]. Moreover, medium spiny
neurons (MSNs) expressing caspase-6 resistant mHtt showed
a decreased susceptibility for NMDAR-induced excitotoxicity
and no caspase-6 activation compared to MSNs expressing
unmodified mHtt [56-58]. By contrast, two caspase-6 knock-
out HD mouse models showed that production of a 586
amino acid derived proteolytic fragment was not prevented in
the brain, disagreeing with a direct involvement of caspase-6
in mHtt cleavage [59, 60].

Correlating with the results for huntingtin, caspases-1and
-3, but not caspases-7 and -8, were reported to cleave ataxin-
3 in vitro producing specific fragments [22]. The impact
of caspase cleavage was confirmed in a cell based model,
showing that predominantly caspase-1-mediated fragmenta-
tion of expanded ataxin-3 resulted in increased aggregation
and treatment with caspase inhibitors prevented inclusion
formation in vitro [61]. Interestingly, a different in vitro study
showed that mutant ataxin-3 was cleaved to a lesser extent
than wild-type ataxin-3 after a common initial proteolytic
step, suggesting that generated mutant fragments cannot be
further degraded. This may result in an accumulation of
aggregation-prone expanded ataxin-3 fragment species [62].
In a Drosophila model cleavage of ataxin-3 appeared to be
conserved and also caspase-mediated, featuring neuronal loss
which was mitigated by a sextuplet caspase site mutation in
ataxin-3 [63]. A recent publication reported involvement of
CDKS in caspase-mediated ataxin-3 cleavage, showing that
RNAi of CDKS5 in a Drosophila model for SCA 3 resulted in
an enhanced SCA 3 toxicity [64]. Contrary to results pointing
to an involvement of caspases in the molecular pathology
of SCA 3, an in vitro study based on patient-derived iPSCs
demonstrated that upon excitotoxic stress ataxin-3 cleavage
and aggregation were prevented neither by pharmacological
inhibition of caspases-1 and -3 nor by treatment with a pan-
caspase inhibitor but was abolished by inhibiting calpain
activity [65].

In the case of SCA 7, in vitro assays identified caspase-7
as the responsible proteolytic enzyme for ataxin-7 fragmen-
tation. The mutation of two specific caspase-cleavage sites in
ataxin-7 not only resulted in a resistance of polyQ expanded
ataxin-7 to caspase cleavage but also attenuated cell death,
aggregate formation, and transcriptional interference in cells.
Fragments of ataxin-7 corresponding to products of caspase-
7 cleavage were also found in SCA 7 mice, which furthermore
exhibited an increased caspase-7 activation and recruitment
into the nucleus by expanded ataxin-7 [24]. Nonetheless,
full-length expanded ataxin-7 can form inclusions without
evidence for cleavage [54].

TBP (TATA-binding protein), the disease protein in
SCA 17, was reported to show fragmentation and fragment-
dependent formation of aggregates in SCA 17 mice [18], but
in vitro assays did not show a TBP substrate-specificity for
caspases [22], suggesting different proteolytic enzymes to be
involved in truncation of TBP.

A second group of proteolytic enzymes that were associ-
ated with cleavage of polyQ expanded proteins are calpains, a
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class of calcium-dependent cysteine proteases. These ubiqui-
tously expressed enzymes exhibit a multitude of regulatory
cellular functions and are specialized in modulating struc-
ture, localization, and activity of their substrates [66, 67].

In human HD tissue and in brains of HD mouse models
an increased expression level of calpains, namely, of calpains-
1, -5, -7, and -10, and elevated enzyme activity have been
reported [25, 26, 68, 69]. Interestingly, an age-dependent
attenuation of calpain activity was observed in an HD mouse
model, suggesting alterations in calcium signaling mecha-
nism with disease progression [70]. Furthermore, wild-type
and mutant huntingtin were identified as calpain substrates
and calpain-dependent proteolytic cleavage products of hunt-
ingtin were detected in murine and human HD tissue [25,
27, 46, 71]. Caspase-3 cleavage derived huntingtin fragments
undergo further proteolysis by calpains, generating smaller
products and suggesting a proteolytic pathway of serial
processing events [20]. Additionally, calpain-derived mHtt
fragments were shown to accumulate in the nucleus [26],
which correlates with cytotoxicity and aggregation in HD
[34, 35]. In cell models, the inhibition of calpain cleavage of
mutant huntingtin by mutating putative cleavage sites within
the huntingtin protein resulted in a decreased proteolysis,
aggregation, and toxicity [26]. The mutation of Ser-536 to
aspartic acid in order to mimic phosphorylation abolished
huntingtin proteolysis at this cleavage site and reduced
mutant huntingtin toxicity, pointing to an involvement of
phosphorylation events as modulators of calpain cleavage
[72]. Concurrent with their activation after ischemic injury,
calpains were also shown to cleave full-length huntingtin
in infarcted rat cortex and striatum producing N-terminal
fragments [73].

Although initial studies stating that an involvement of
calpains in SCA 3 was not detectable [61, 63], calpain-
dependent proteolysis of ataxin-3 has been reported cor-
responding to observations in HD [28, 29, 65]. Several
putative calpain cleavage sites within the ataxin-3 protein
were identified [28, 29, 65, 74], accounting for the generation
of a C-terminal polyQ-containing and aggregation-prone
fragment [33]. After activation of calpains in vitro, fragments
of respective sizes were generated. This effect was suppressed
when the endogenous calpain inhibitor calpastatin (CAST)
was coexpressed in treated cells and aggregation of mutant
ataxin-3 was induced or decreased [28]. In a double mutant
CAST KO/SCA 3 mouse model, the knockout of the endoge-
nous calpain inhibitor led to higher ataxin-3 fragmentation,
amplified aggregate load, increased neurodegeneration, and,
in conclusion, to a more severe behavioral phenotype [29].
Reciprocally, overexpression of CAST using adenoassociated
viral vectors in a lentiviral mouse model of SCA 3 resulted
in reduced ataxin-3 proteolysis and in decreased size and
number of intranuclear inclusions of ataxin-3 and neuro-
protection via calpain inhibition [74]. In line with these
observations, CAST was shown to be depleted in murine
and human SCA 3 brain tissue [74]. The neuronal specificity
of the molecular mechanisms underlying SCA 3 pathology
has been demonstrated by an approach using SCA 3 patient-
derived IPSCs. After neuronal differentiation and glutamate-
induced calcium influx, excitation-induced ataxin-3 cleavage
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and aggregation were triggered. This was observed only in
neurons, not in glial cells or fibroblasts, and was abolished
by calpain inhibition [65].

Although caspases and calpains are reported to account
for the majority of cleavage effects on polyQ expanded
disease proteins, several fragmentation events could not
be explained by their proteolytic activity. An important
group of enzymes to consider is the lysosomal cathepsins,
which has been shown to process mutant huntingtin. An
involvement of cathepsins-D, -B, -L, and -Z [75-77] has
been indicated to produce fragments termed cp-A and cp-
B [78]. For the cp-A fragment it was illustrated that the
protease responsible for its formation has cathepsin-D-like
properties in immortalized neurons and gamma-secretase-
like properties in primary neurons, pointing to a cell type
specific involvement of different proteolytic enzymes [79]. A
further screen for identification of novel proteases using 514
protease-specific siRNAs detected 11 enzymes including three
members of the matrix metalloproteinase (MMP) family
cleaving huntingtin. When knocking down the most promis-
ing candidate MMP-10 in a striatal cell line cleavage of mutant
huntingtin was prevented. In line with this work, MMPs
were shown to be upregulated in HD mouse models and loss
of function of Drosophila MMP homologs also ameliorated
mutant huntingtin-induced neuronal dysfunction [80]. A
very interesting novel explanation for the appearance of
toxic fragments of huntingtin is that observed missplicing
of huntingtin transcripts accounts for shortened N-terminal
huntingtin variants [81]. A likewise fascinating attempt to
explain ataxin-3 cleavage was done by showing that the
intrinsic proteolytic property of ataxin-3’s Josephin domain
may lead to an autolytic processing of the disease protein [82].
However, C14A ataxin-3 mutants lacking proteolytic activity
exhibited no differences neither in subcellular localization
nor in proteolysis [62].

As a multitude of publications show that proteolytic
processing of polyQ expanded proteins by a variety of
enzymes represents a pivotal step in the molecular path-
omechanism of polyQ diseases, modulating the activity of
cleavage-responsible proteases or decreasing the levels of
toxic fragments could be reasonable approaches for therapeu-
tic treatment.

There are various ways to approach treatment. One
method is to inhibit the proteolytic activity of caspases,
calpains, cathepsins, or MMPs directly. Using such methods
beneficial effects were achieved for HD [26, 46, 80, 83, 84]
and SCA 3 [28, 61, 63, 65]. But attention should be paid to
potential adverse effects as well [84]. A similar approach is
to target the expression of endogenous inhibitors, such as
calpastatin, as was done in SCA 3 [28, 29, 74].

A second approach is to modulate alternate pathways
and achieve off-target benefits. Treating R6/2 mice with a
tetracycline derivative delayed disease progression and death
by reducing the levels of caspases-1 and -3 [42] through
upstream regulation of Apaf-1[85]. Reducing elevated calpain
activity in HD mice also had beneficial off-target benefits [68,
69]. In addition, CDK5 was reported to act against caspase
cleavage of huntingtin by phosphorylation at S434 [86]. In
SCA 3, decreasing CDKS5 levels via RNAi in Drosophila

enhanced mutant ataxin-3 toxicity [64]. Another option is
to use a genetic approach to modulate cleavage such as
induction of exon 12 skipping in huntingtin pre-mRNA using
oligonucleotides. This modification prevented the translation
of the caspase-targeted region around amino acid 586 and
thereby inhibited the formation of an N-terminal fragment
implicated in HD toxicity [87].

3. Aggregation

As the pathological hallmark of polyQ diseases [1], aggre-
gation has been widely discussed as therapeutic target.
Although it serves as an easy readout for screens, cell
models, and neuropathology, the exact role of aggregates in
the neurodegeneration observed in polyQ diseases is still
under debate. In the field of polyQ diseases, aggregates
were identified as intranuclear inclusions in mouse models
of Huntington’s disease [52] and subsequently confirmed
in HD patients [37, 88]. This was quickly followed by an
identification of aggregates containing the disease protein in
SCA 3 [32, 38] and SCA 1 [89] and cytoplasmic aggregates
in SCA 6 [90], SCA 7 [54, 91], and SCA 17 [92]. In SCA 2,
the initial reports of the absence of aggregation [93, 94] have
since been challenged [95, 96].

What was initially observed as large fibrillar inclusions is
most likely the end stage of protein aggregation and nucle-
ation. The beginning steps feature monomeric species which
transform into oligomeric structures and protofibrils/fibrils,
although the correlation between these intermediates may
not be linear. Some of these species may be direct pathway
intermediates while others may not be directly relevant to the
inclusion formation seen in patients [97]. Recent advances
are being made and assays developed which will help in
studying this pathway of aggregation, monomer addition, and
isolating specific aggregate species [98]. Work in the field
of HD on oligomer formation is bringing the field closer
to understanding the mechanisms behind nucleation. The
conversion of monomers to oligomers in HD is described as a
packing of the N-terminal Htt segment into the oligomer core
[98], elongation of fibrils follows, and a third step involves
the ability of oligomers to seed monomer elongation. The
work suggests that oligomer dissociation rates are similar to
association rates and that oligomers serve as both on-pathway
and off-pathway intermediates in fibril formation. It seems
important to thus consider the aggregation pathway as an ebb
and flow of intermediates which feed into multiple pathways.
Ataxin-3 was also shown to have a multistep aggregation
process where the first step involves the aggregation of the
protein independent of the polyQ domain and a second
step which is unique to the polyQ expansion and produces
highly stable amyloid-like aggregates [99]. In a discussion
about aggregation pathways, it is also important to note that
kinetic differences between nucleation and protein folding
in the nucleus and in the cytoplasm probably play a large
role in the observed differences we see in inclusions between
nuclear protein aggregates such as in SCA 1 and SCA 3
and cytoplasmic proteins such as SCA 2 and SCA 6 [100].
For HD, the study of the aggregation pathway pointed to



“at least three” aggregation pathways which can be influ-
enced by various inhibitors, molecules, and interactions [101].
Inhibiting each pathway has different effects on neurotoxicity.
The same was shown for ataxin-3 where different amyloid
aggregates affect Ca®" regulation by different mechanisms
[102]. Altering the specific pathways of aggregation is a
potential therapeutic strategy which may not decrease the
total amount of aggregation but could decrease neurotoxicity.

A widely discussed topic is the exact cytotoxic nature of
aggregates. By looking at the specific location of inclusions
in patient brains, a discrepancy arose between the neurons
which have the inclusions and the neurons which are known
to degenerate [103]. In HD, the medium spiny neurons
which are selectively lost present with much less aggregation
than the large interneurons [103]. This and similar findings
suggest that the large aggregates are protective. But the other
work, such as in SCA 1, reiterates the relationship between
aggregates and cytotoxicity. Patients who have a specific
histidine interruption in the expanded polyQ tract of ataxin-
1 have a decreased amount of aggregation and absence of
disease [104]. The issue with such findings is that it does
not provide insight into what is happening with intermediate
oligomeric species which are more correlated to the onset of
symptoms than to the formation of large protein aggregates
[105, 106].

Just to highlight how complex it is to tease out the exact
role of aggregates, in SCA 7 and SCA 6, different types
of nuclear inclusions were identified. In SCA 7, they differ
in their size, composition, and distribution of key proteins
[54, 91] and detection with a p62 antibody found different
subsets of cytoplasmic aggregates in SCA 6 [107]. Furthering
our understanding of the interplay between neuronal types
can tell us more about the effect of aggregation in specific
populations and how that affects the health of surrounding
cells. It is difficult to come to a conclusive decision on
aggregation and to pull apart the protective properties from
the cytotoxic ones without further information.

The discussion on toxicity of aggregates is also relevant
for the screening of large libraries of therapeutic compounds
or genetic modifiers. Using aggregation as readout is intuitive
since if any part of the pathways of aggregation is toxic, then
reducing the eventual product of large readout aggregates
could also be considered reducing the intermediate toxic
species. However, the field should be cautious about block-
ing the conversion of toxic oligomeric species to possible
beneficial aggregates or shifting the balance of different
conformation in an unfavorable direction [108]. It is also
possible to look at increasing the overall rate of aggregation
which could decrease the amount of time in which toxic inter-
mediates can do damage but would cause an overall increase
in total large aggregates. Targeting the depletion of specific
species with antibodies or upregulated clearance is also a
therapeutic possibility. Also, although extracellular aggregate
transmission has not been proven for polyglutamine diseases,
it could be possible to target the prion-like spread of smaller
fibrils and oligomers [109, 110].

In general, a focus on aggregation has allowed the
field to gain knowledge about various biological pathways
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involved in polyQ induced neurodegeneration. As previously
described, cleavage plays a large role in the kinetics of
aggregation and the mechanisms of toxicity. In the search
for intermediate steps between proteolysis and aggregation,
it was demonstrated in various cell models that polyQ-
containing fragments or polyQ stretches themselves are gen-
erally able to form soluble oligomeric structures, mediating
cytotoxicity and representing a starting point for subsequent
aggregation [111-113]. These oligomeric species could also be
identified in brain tissue of HD mouse models and patients
(113, 114].

Looking at aggregates has also allowed us to see the
recruitment of proteasomal subunits and look into the
dysregulation of the ubiquitin system in neurodegeneration.
But aggregation is slowly becoming an avoided topic in
polyQ research. Hopefully recent advances in understanding
aggregate intermediates will open a door to a better analysis
of aggregation in neurodegeneration. This can lead to a
renewed interest in understanding the complexity behind
protein folding and nucleation in polyQ diseases.

4. Nuclear Transport

One aspect relevant to both of the aggregation of these
proteins and to their general function is their ability to
shuttle between the nucleus and cytoplasm. This transport
modulates how they both perform their regular function and
cause neurodegeneration. Nuclear transport encompasses
many features of protein function such as transcription,
avoidance of protein clearance machinery, import of a toxic
fragment, and many other cellular processes. The current
evidence suggests that the nucleus is a large site of toxicity
in cells and blocking nuclear transport in animal models
has shown that this pathway is a possible therapeutic target
[109, 115, 116]. In general, nuclear entry is a highly controlled
process and at the heart of that regulation is the nuclear pore
complex which serves as a selective gatekeeper of entry [117].
The nuclear pore complex recognizes a group of proteins
known as karyopherins which are carrying protein cargo for
entry and exit out of the nucleus. Karyopherins recognize
their cargo by the presence of specific nuclear localization
signal (NLS) and nuclear export signal (NES) on proteins
(reviewed by [118]). The most direct way for a protein to be
transported by a karyopherin is to have an identifiable NLS
or NES (or combination), but secondary features such as the
visibility of this signal and posttranslational modifications
such as phosphorylation and cleavage which alter the signal
also play a large role.

Within the polyQ diseases discussed here, NES and/or
NLS have been found for the disease proteins of SCA 1, SCA
3,SCA 7, and HD [11, 119-123].

In SCA 1, specifically, it has been shown that regulation
of nuclear localization is relevant to disease progression
and ataxin-1 stability. It was shown early on that blocking
the NLS on ataxin-1 prevents the protein from causing
neurodegeneration in vivo [11]. It was later explained that
phosphorylation at S776 and the subsequent binding and
release from 14-3-3 can mask the NLS, stabilize ataxin-1, and
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modulate its localization [124] which is important for the
nuclear interaction of ataxin-1 with splicing factors RBM17
and U2AF65 [125]. 14-3-3 is a protein that is involved in reg-
ulating many cellular processes by binding phosphorylation
sites and the example of ataxin-1 demonstrates how factors
outside of direct nuclear shuttling influence localization and
affect the direct pathomechanisms of disease.

SCA 3 and HD have been the two most widely stud-
ied in the possible therapeutic regulation of transport to
modify disease. The focus on nuclear transport has been
a consequence of studies where fusing mutant fragments
of Htt to exogenous NES prevented nuclear transport and
inhibited the toxicity of the fragment [126, 127] and the
reverse happened when it was fused to an NLS [126]. This
work was reproduced in a mouse model which had a shorter
lifespan correlated to an added NLS [128]. It has been
difficult to tie together the cellular events that cause transport
with the known pathways of nuclear entry. It is known, for
example, that ataxin-3 and huntingtin enter the nucleus in
response to cellular stress and heat shock, but the exact
mechanism of transport is not elucidated [129-131]. Also,
phosphorylation of both proteins has been linked to nuclear
transport. Phosphorylation of huntingtin on N17 releases it
from the endoplasmic reticulum to allow nuclear entry but
also prevents export from the nucleus during stress response
[132] and modulates its neurotoxicity [133]. In the case of
ataxin-3, CK-2 dependent phosphorylation of $340 and S352
within the third UIM (ubiquitin interacting motif) has been
suggested to control nuclear entry [134]. The current research
is also focused on understanding the karyopherins involved
in the recognition of the NLS and NES sites of these proteins
with the aim of modulating disease. CRM], or exportin-1, has
been shown to interact with both ataxin-3 and huntingtin
NES sites [132, 135] and suggested to be an exporter of ataxin-
7 [122]. Karyopherins Bl and B2 have also been published
as possible mediators of huntingtin localization which act
on a putative huntingtin NLS [136]. Cellular and oxidative
stress were shown to alter the activity of CRMI and to
affect the localization of polyQ proteins by posttranslational
modifications of karyopherins or subsets of the nuclear pore
complex [137].

Also of note is the importance of the NLS site in SBMA.
The androgen receptor (AR) is kept in the cytoplasm by heat
shock proteins which mask this nuclear localization site but,
upon binding to the androgen ligand, the NLS is exposed
and the androgen receptor translocates to the nucleus where
it activates androgen-responsive genes (reviewed in [138]).
The presence of the androgen receptor in the nucleus in the
presence of the ligand is considered necessary for disease
development as mice with an NLS deletion showed delayed
onset of phenotype and reduced motor deficit [139]. It is
important to note this nuclear function of the AR as the
proteins in SCA 1, SCA 3, and HD may also have similar
important roles in the nucleus, although aggravating their
nuclear presence may overwhelm those beneficial roles and
cause neurotoxicity.

In those polyQ diseases where an NLS or NES has not
been identified, localization of the protein has still proved
to be important to pathogenesis. Recent work using a polyQ

antibody has demonstrated that the localization of ataxin-
2 within the cell corresponds to disease stages of SCA
2. Cytoplasmic presence corresponded to early stage and
nuclear presence and aggregation to final stages of the disease
[140]. The mislocalization of ataxin-2 has also been shown
to be a potent modifier of ALS/TDP43 toxicity [141] and it
has also been suggested that ataxin-2 is important for SCA
3 neurodegeneration. This points to the possibility that the
localization of ataxin-2 is important in modulating other
neurodegenerative diseases [142]. In SCA 6, the C-terminal
peptide of the alpha 1A subunit of the P/Q-type voltage-gated
calcium channel with the expanded polyQ tract is also toxic
to cells depending on its nuclear localization [143]. Although
the exact mechanism behind this translocation is not known,
the current hypothesis is that it is important for disease
progression.

One way to affect localization is to target the polyQ
expansion of the protein. It was shown that the expansion
of the CAG repeat in Htt reduces its interaction with Tpr,
a nuclear pore protein, which is involved in nuclear export
[144] and the expansion of ataxins-3 and -7 has also been
linked to nuclear retention [122, 145].

Opverall, nuclear trafficking and localization are a summa-
tion of many processes that happen within the cell starting
from cleavage of the protein, aggregation, modulation of
mitochondrial response, and involving all functions of the
protein such as transcriptional regulation. The list of proteins
with altered subcellular localization in neurodegeneration
includes NFkB, ERK1/2, TDP43, Smad, E2F1, CREB, and
many others [146]. Because of this wide breadth of cellular
mechanisms involved in nuclear localization, it should always
be considered an aspect of therapeutic intervention.

5. Clearance Mechanisms

It is known that polyQ proteins are associated with the
formation of intracellular aggregates, possibly through the
formation of toxic fragments, but the important question of
what clearance mechanisms are involved remains. The two
main clearance routes of organelles and proteins in eukary-
otic cells are the ubiquitin-proteasome system (UPS) together
with heat shock response and the autophagy-lysosomal
pathway. While proteasomes predominantly degrade short-
lived nuclear and cytoplasmic proteins as well as misfolded
and unfolded proteins from the endoplasmic reticulum, the
autophagic system can degrade organelles and cytoplasmic
protein complexes [147, 148].

The interplay of heat shock proteins, chaperones, and the
UPS is important for protein clearance [149]. During oxida-
tive or cellular stress heat shock proteins are dramatically
upregulated. They bind to misfolded proteins and remodel
them back to their native formation. If refolding is not
possible, degradation by the proteasome is initiated. Failure
in one of the systems can be compensated partially by the
upregulation of the other, but prolonged failure results in
protein aggregation and dysfunctional homeostasis of cells
[150]. Many wild-type ataxins as well as huntingtin have
been shown to interact with components of the UPS under



normal conditions. Yeast two hybrid assays demonstrated
an interaction of ataxin-3 and the ubiquitin and proteasome
binding factors HHR23A and HHR23B [151, 152]. Ataxin-1
was shown to interact with the ubiquitin-like protein A1Up
[153], the ubiquitin-specific protease USP7 [154], and the E2
ubiquitin-conjugation enzyme UbcH6 [155, 156]. Moreover,
ataxin-7 was indicated to interact with the S4 subunit of the
19S proteasome [157].

In line with the fact that normal function of polyQ
proteins involves interaction with the quality control sys-
tem is the knowledge that molecular heat shock proteins,
ubiquitin, and proteasomal subunits are found in neuronal
aggregates in postmortem brains of patients. In HD patients
and animal models, aside from the N-terminal part of
mHtt, ubiquitin, molecular chaperones including GRP78/BiP,
HSP70, and HSP40, and the 208, 19S, and 11S subunits of the
26S proteasome were also found ([37, 158], reviewed in [159]).
Similar results were described for SCA 1 [160], for SCA 3 [161],
and for SCA 7 [54, 157]. Together, these findings indicate
that ubiquitin, heat shock proteins, and subcomplexes of the
26S proteasome are redistributed to the site of polyQ protein
degradation.

The carboxyl terminus of the HSC70-interacting protein
(CHIP) is a HSP70 cochaperone as well as an E3 ubiquitin
ligase that protects cells from proteotoxic stress. The ability
of CHIP to interact with HSP70 and function as a ubiquitin
ligase places CHIP in a pivotal position in protein quality
control [162] and makes CHIP a frequently analyzed protein
in polyQ refolding and degradation. It was shown that
CHIP directly interacts and colocalizes to ataxin-1, ataxin-
3, and huntingtin aggregates [163, 164]. Additionally, CHIP
promotes ubiquitination of wild-type and mutant ataxins-
1 and -3 and huntingtin as well as decreasing steady state
levels of mutant ataxins-1 and -3 and huntingtin by inducing
degradation. Therefore, CHIP suppresses aggregation and
toxicity in cell culture and Drosophila [163, 164]. Suppression
of CHIP resulted in an increased formation of microaggre-
gates and toxicity in a SCA 3 transgenic mouse model [165].
Moreover, overexpression of CHIP together with ataxin-1
led to reduction of ataxin-1 solubility and thus increased
formation of aggregates [166]. Another HSP70-dependent
E3 ligase that is shown to act redundantly to CHIP on
some substrates is parkin [167]. Parkin (PARK2, mutated in
an autosomal recessive form of PD), which mediates the
targeting of proteins for proteasomal degradation, is known
to interact and modulate ataxin-2 and ataxin-3 but not ataxin-
1 [166, 168-171]. Wild-type and polyQ expanded ataxin-3
deubiquitinate parkin directly and parkin ubiquitinates and
facilitates the clearance of wild-type and mutant ataxin-2 and
ataxin-3 by proteasomal degradation [168-170]. Additionally,
it was demonstrated that parkin forms a complex with the
expanded polyQ protein, HSP70, and the proteasome. This
decreases cytotoxicity in SCA 2 and SCA 3 by reducing
proteasomal impairment. No direct interaction of huntingtin
and parkin has been described to date although studies
confirmed the colocalization of parkin and huntingtin in
mouse brain as well as in patient samples [168]. Additionally, a
partial suppression of parkin in an HD mouse model slightly
aggravates the neurological phenotype [172]. The interaction
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or modulation of polyQ disease proteins by parkin can offer
an explanation of the parkinsonian phenotype in SCA 2 and
SCA 3. Also it is noteworthy that ataxin-1 interacts and is
modulated by an E2 ubiquitin-conjugation enzyme, called
UbcH6, which regulates the transcriptional repression of
expanded ataxin-1 and the rate of ataxin-1 degradation [155,
156]. The binding and ubiquitination of huntingtin by the
E2 ubiquitin-conjugation enzyme E2-25K is not influenced
by the length of the polyQ stretch [173]. But it is shown
that the expression of E2-25K modulates the aggregation and
toxicity of mutant huntingtin and that E2-25k is recruited to
aggregates in HD and SCA 3 patients [174]. Together these
findings indicate a clear influence and impairment of the UPS
in all polyQ diseases discussed with the exception of SCA
6. Here, the proteasome has not been implicated in disease
progression and there is no evidence for the ubiquitination of
aggregates.

Unfolding and remodeling of proteins is necessary for
them to pass through the narrow pore of the proteasome
barrel, which thus precludes clearance of oligomers and
aggregated proteins [175]. A number of polyQ diseases have
been associated with decreased chaperone and proteasome
activity in patients, cell, and animal models of SCA 1, SCA
3, SCA 7, SCA 17, and HD [176-182]. Nonetheless, there
was work demonstrating that, in a SCA 7 knock-in mouse
model, no significant impairment of the UPS was found
[183]. Also, in recent studies on HD degradation, rapid
and complete clearance of polyQ expanded huntingtin in
neuronal cells and in vitro was shown [184] and dynamic and
reversible recruitment of proteasomal subunits into inclusion
bodies was observed in living cells [185]. In addition, several
groups demonstrated that inhibition of the proteasome in cell
culture and mammalian cells results in increased aggregation
and cytotoxicity in SCA 3 and HD [181, 186], whereas an
overexpression of p45 (ATPase of 19S subunit of protea-
some) stimulates degradation of ataxin-3 [187]. Whether the
proteasomal enzymatic machinery is able to cleave between
successive glutamine residues remains unclear [184, 185, 188-
190].

One widely accepted theory is that degradation of mis-
folded polyQ proteins is a team effort between autophagy
and the UPS. Besides the above mentioned involvement of
the UPS it is known that the aggregation-prone polyQ pro-
teins and fragments strongly depend on autophagy for their
clearance [191]. In SCA 7, the unmodified truncated protein
was shown to be degraded via macroautophagy in vitro [192]
and it was shown that macroautophagy and proteasomal
degradation play a role in degrading mHtt [76, 184]. In these
studies they demonstrated that blocking autophagy resulted
in reduced cell viability and increased number of aggregates
and stimulating autophagy promoted clearance of wild-type
and mutant huntingtin as well as its caspase derived N-
terminal fragment of huntingtin [76]. Specifically targeting
the N-terminal huntingtin for the UPS decreased its levels
and thus decreased aggregation [184]. Furthermore, it was
shown that a polymorphism in an autophagy related gene
(ATG7) modulates the age at onset of HD patients [193, 194].

For SCA 1, SCA 3, SCA 6, and SCA 7 an increased suscep-
tibility of cytoplasmic aggregates to autophagic degradation
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was shown compared to nuclear polyQ inclusions [195-
200]. Impairment of the autophagic system is demonstrated
by an increased number of autophagosomes, endosomal-
lysosomal-like organelles, and multiple vesicular bodies. This
was shown in brain and lymphoblasts of HD patients and
in primary neurons and brain of HD transgenic mice [52,
201-203]. Characterization of a SCA 1 transgenic mouse
model also indicated changes in the autophagic flux by
vacuolar formation with autophagic origin and significant
altered LC3-II/-I ratio [204]. Similar results were found in
ataxin-7 transgenic mice where LC3 levels were significantly
altered and wild-type ataxin-7 levels were stabilized by
autophagy whereas no stabilizing effects were described for
mutant ataxin-7 [196]. Additionally, it was shown that full-
length and cleaved fragments of ataxin-7 are differentially
degraded. While full-length wild-type and mutant ataxin-7
was primarily found in the nucleus and therefore degraded by
the UPS, fragments of ataxin-7 which were located in both the
cytoplasm and nucleus were found to be degraded similarly
by autophagy and the UPS [197]. Pharmacological activation
of autophagy by treatment with a p53 inhibitor led to
increased autophagic activity together with reduced ataxin-
7 toxicity and therefore represents a possible therapeutic
approach in the treatment of SCA 7 [205].

p62 acts as a cargo receptor for degradation of ubiqui-
tinated targets by autophagy [206]. Studies in human post-
mortem brain samples from SCA 3, SCA 6, and HD patients
revealed p62 positive cytoplasmic, axonal, and nuclear aggre-
gates. This again indicates an involvement of the autophagic
system in the clearance of aggregated polyQ proteins [107,
207,208]. p62 also contributes to recruitment of proteasomes
to nuclear aggregates of ataxin-1 and to the degradation of
ataxin-1[209]. As discussed earlier, mammalian proteasomes
may not be able to cleave (polyQ) sequences and seem to
release polyQ-rich peptides. An initial study about a cytosolic
enzyme called puromycin-sensitive aminopeptidase (PSA)
showed that it is able to digest polyQ sequences [210].
However, in cultured cells, Drosophila, and mouse muscles,
PSA overexpression decreased aggregate content and toxicity
of mutant huntingtin and mutant ataxin-3 by enhancing
autophagy [211].

As discussed earlier in this review, aggregates including
polyQ protein fragments are believed to cause neuronal
death. Therefore, reducing the amount of aggregates is
an important therapeutic strategy. This reduction can be
achieved by enhancing the above described mechanisms:
chaperone mediated refolding of polyQ proteins or degrada-
tion of misfolded proteins by autophagy or the UPS. Heat
shock proteins were shown to accumulate in aggregates of
HD, SCA 1, SCA 3, and SCA 7 and this led to an interest in
modulating the molecular chaperone machinery as a possible
therapeutic strategy for polyQ diseases. An overexpression of
HSP40/HD]J-2 suppressed ataxin-3 and ataxin-1 aggregation
in vitro 3, 160], but not in huntingtin exon 1 overexpressing
cell lines [185]. Moreover, modulation of the chaperone
system in HD, SCA 1, SCA 3, and SCA 17 studied in vitro
[212, 213], yeast [214], C. elegans [215], Drosophila [216], mam-
malian cells [186, 217-219], and animal models [220-226]
demonstrated controversial results. As the overexpression of

single members or the combination of different members
of the molecular chaperone system gave controversial and
transient effects, the development of combinatorial therapies
was proposed. Combining treatment with histone deacety-
lase (HDAC) inhibitors was promoted in recent years. It
was shown that the oral administration of 17-(allylamino)-
17-demethoxygeldanamycin (17-AAG) markedly suppressed
eye degeneration, inclusion formation, and lethality in a
SCA 3 Drosophila model and also neurodegeneration in an
HD Drosophila model by induction of HSP70, HSP40, and
HSP90 expression [227]. Valproic acid (VPA) an antiepileptic
drug which also acts as an HDAC inhibitor and promotes
expression of small molecules including HSP70 was shown
to alleviate the phenotype of SCA 3 in Drosophila [228]
and in HD transgenic mice [229]. Furthermore, a combined
treatment of lithium (induces autophagy and downregulates
HDACI) and VPA produced several beneficial effects and
prolonged median survival in HD transgenic mice [230]. In
HD patients, valproic acid is discussed to have beneficial
effects on psychiatric symptoms [231] but was also shown to
have side effects like developing Parkinson’s syndrome with
an axial dystonia [232]. The HDAC inhibitor sodium butyrate
was shown to delay the onset, ameliorate the neurological
phenotype, improve the survival in SCA 3 transgenic mice,
and improve the survival of neurons in an ataxin-7 cell
model [55, 233]. An analog of this compound, sodium
phenylbutyrate, was successfully tested in HD mice [234] and
was shown to be safe and well tolerated by HD patients [235],
but a phase Il clinical trial (started 2006) was abandoned with
no cited results.

Although attempts at modulating the proteasome system
have been made, upregulation of this pathway is challeng-
ing and thus attention has shifted to enhancing autophagy
[236]. In polyQ diseases, it has been demonstrated that
modulation of one system has direct effects on the other.
An HSP90 inhibitor (17-DMAG) resulted in a reduction of
neuropathology in a SCA 3 transgenic mouse model although
the biggest induction was of LC3-II and beclin and not in heat
shock proteins as expected [237]. Beclin modulation has been
previously shown to rescue motor symptoms and ataxin-3
clearance in a lentiviral-based rat model [199, 200] and in HD
cell culture and primary neurons [237, 238].

Autophagy can also be upregulated by mTOR-
(mammalian target of rapamycin-) dependent and mTOR-
independent pathways. Autophagy can be induced in all
mammalian cell types by rapamycin, an inhibitor of mTOR.
Rapamycin treatment of cells expressing aggregation-
prone polyQ disease proteins enhanced the degradation
of polyQ proteins, reduced the number of aggregates,
and protected cells, flies, and mice from mutant protein-
associated degradation in SCA 3 and HD [239-241]. Lithium,
which is normally used to treat bipolar disorders, was
shown to have beneficial effects in polyQ diseases by an
mTOR-independent pathway. It targets various intracellular
enzymes, including glycogen synthase kinase 38 and inositol
monophosphatase by lowering inositol and IP3 levels
[242]. Induction of autophagy by lithium led to enhanced
clearance of autophagy substrates, like mutant huntingtin
fragments as well as mutant ataxin-1 and ataxin-3 in vitro, in
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Drosophila and mouse models [240, 243-246]. Additionally,
a combinatory treatment of lithium and rapamycin protected
an HD Drosophila model against neurodegeneration by
enhancing macroautophagy [247]. Other substances having
a beneficial effect on mutant huntingtin toxicity and
clearance by activating an mTOR-independent pathway
are rilmenidine and trehalose [248]. Trehalose together
with rapamycin again showed an additive effect on the
clearance of mutant huntingtin [249]. Very recently, the first
nanomedical approach in treating HD was presented. It was
demonstrated that europium hydroxide nanorods reduced
huntingtin aggregation by inducing autophagic flux [250].

6. Mitochondrial Dysfunction

As the field of research in polyQ diseases is progressing,
more is understood about the common mechanisms behind
neurodegeneration. Over the last decade an emerging role
in the pathogenesis of several neurodegenerative disorders
such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
and amyotrophic lateral sclerosis (ALS) [251, 252] has been
assigned to mitochondrial dysfunction and impaired energy
metabolism. This can be explained by the high energy
demands of neuronal cells and their inability to produce
ATP by glycolysis and hence dependence on functional
mitochondria for oxidative phosphorylation. Recent findings
also support the involvement of dysfunctional mitochondria
in polyglutamine diseases. Most insights were gained in the
field of Huntington’s disease but several studies also highlight
the role of mitochondria in the pathology of spinocerebellar
ataxias.

Metabolic defects and loss of body weight at early stages
of the disease are well described symptoms of polyQ disease
patients in HD [253, 254], SCA 1 [255], and SCA 3 [256] as
well as in the respective disease mouse models [9, 41, 257]. For
HD and SCA 3 patients, an inverse correlation between body
mass index and CAG repeat number was reported [256, 258].
In SCA 1 patients this weight loss appears despite a balance
between energy intake and expenditure and patients show an
increase of energy expenditure and fat oxidation at a resting
state which might be a cause of altered autonomic nervous
system activity and gait ataxia [255].

Another common feature of polyQ diseases is metabolic
alterations. Advanced magnetic resonance imaging tech-
niques are used to study alterations in metabolite concen-
trations in distinct brain regions of patients and mouse
models. Increased lactate production was found in cortex
and basal ganglia of HD patients [259] while cerebellum and
brain stem of SCA 1 patients showed decreased total NAA
(N-acetylaspartate + N-acetylglutamate, tNAA) concentra-
tions and elevated glutamine, total creatine, and myoinositol
concentrations compared to controls [260, 261]. The levels
of tNAA and myoinositol correlated with patients’ ataxia
scores. Similar changes in metabolite concentrations were
seen in conditional SCA 1 and a SCA 1 knock-in mouse
models. Interestingly, the metabolite levels almost went back
to baseline when expression of the transgene was suppressed
at early stages of the disease in the conditional mouse model
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and alterations in metabolite levels were observed in knock-
in mice months before any pathology was detected [261, 262].

Apart from alterations in metabolite concentrations,
oxidative stress and changes in ATP production caused
by deranged respiratory chain complex activities indicate
mitochondrial dysfunction in polyQ disease. As previously
reviewed, HD patients show reduced complexes II, III,
and IV activities in putamen and caudate, while alterations
in complex I activity were found in muscles only [263].
Several studies also point to dysfunctional respiratory chain
complex and increased oxidative stress in SCA 2, 3, and
12 [264-270]. Decreased complex II activity was found in
lymphoblasts from SCA 3 patients, in cells from transgenic
mice and in SCA 3 cell models [269]. In cells expressing
human, polyQ expanded ataxin-3, decreased activities of
the antioxidant enzymes catalase, glutathione reductase and
superoxide dismutase, and consequently mitochondrial DNA
damage were detected [266]. Similar findings of increased
catalase levels and DNA damage were gained from SCA 3
patient samples compared to healthy controls [270]. A recent
study also suggests that the disease characteristic aggregates
can be reduced in a neuronal SCA 3 cell model by treatment
with an extract of Gardenia jasminoides which was shown to
reduce the production of reactive oxygen species [271].

While the precise pathways which lead to the observed
problems in mitochondrial bioenergetics remain elusive,
localization of polyQ disease causing proteins to the mito-
chondria and their actions at the mitochondria have been
subjects of intensive research. For SCA 3, it is known that both
normal and polyQ expanded ataxin-3 localize to mitochon-
dria [62] and that degradation of polyQ expanded ataxin-3
via the UPS is promoted by an ubiquitin ligase in the outer
mitochondrial membrane called MITOL [272]. Localization
to the mitochondria was also shown for mutant huntingtin.
Also, mitochondria from HD patient lymphoblasts and from
brain of transgenic mice expressing full-length mHtt had
decreased membrane potential and defects in mitochondrial
calcium handling [273].

An important role in regulating mitochondria mediated
cell death in polyQ disease has been ascribed to the B-
cell lymphoma 2 (Bcl-2) family of proteins. These pro-
teins regulate the permeability of the outer mitochondrial
membrane and thereby control cell survival, morphology,
dynamics, and membrane potential of mitochondria. Bcl-2
family members can be both prosurvival and proapoptotic.
The main family members inhibiting cell death are Bcl-2
and B-cell lymphoma-extra large (Bcl-xL) while the BH3-
only proteins Bax and Bcl-2 antagonist (Bak) form pores in
the mitochondrial membrane and thus initiate apoptosis. For
SCA 3 and SCA 7 it was shown that the mRNA and protein
levels of Bcl-xL were downregulated in cerebellar neurons
when polyQ expanded ataxin-3 and ataxin-7, respectively,
were overexpressed leading to activation of caspase-3 and
caspase-9, two main caspases involved in mitochondrial
induced apoptosis [53, 274]. Recently, it was shown that a
direct interaction between ataxin-3 and Bcl-xL exists and
suggested that ataxin-3 promotes the interaction between
Bcl-xL and Bax [274]. SCA 3 and SCA 7 in vivo models also
showed increased levels of Bax mRNA and protein which
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can be explained by increased levels of active phospho-p53,
a transcription factor known to enhance the transcription
of Bax [53, 274-276]. Similarly, Bax levels were found to be
increased in HD cell and mouse models [51, 268, 277] as well
as in the caudate nucleus of HD patients compared to healthy
individuals [278]. Moreover, polyQ expanded ataxin-3 was
found to decrease mRNA and protein levels of the prosurvival
Bcl-2 by affecting Bcl-2 mRNA stability [279, 280]. For HD,
the alterations of Bcl-2 levels remain controversial. While
expression of mHtt decreased Bcl-2 protein levels in different
cell lines and in brain of HD mouse models [281-283], other
studies did not find alterations in well studied models like
R6/1 [284].

PolyQ proteins are also known to influence the tran-
scription of multiple genes coding for important mitochon-
drial proteins. One example is the impairment of peroxi-
some proliferator-activated receptor-y (PPAR-y) coactivator-
la (PGC-1a) expression and function. PGC-l« is a transcrip-
tional master coactivator controlling mitochondrial biogen-
esis, metabolism, and antioxidant defense [285-287]. Alter-
ations in levels and activity of PGC-1a have been found in HD
patients and mouse models [288, 289] and polymorphisms
of PGC-1« have been described to modify the age at onset
in HD patients [290]. PGC-l« has also been considered a
potential therapeutic target by showing that PGC-1« levels
were restored and phenotype and survival of HD mice were
improved by treatment with bezafibrate, a pan-PPAR agonist
[291]. While PGC-1« emerges as an important player in HD
pathogenesis, little is known about the involvement of this
master coactivator in other polyQ disorders. The question
also remains: whether this mechanism is exclusive to HD or
is a common feature of many polyQ diseases.

Apart from changes in mitochondrial bioenergetics and
transcription of important proteins associated with mito-
chondrial function and cell death, alterations in shape and
motility of mitochondria have been observed in HD. Both
retrograde and anterograde mitochondrial transport along
axons were shown to be impaired by mHtt in cultured
neurons of mouse and rat models [292, 293]. While frag-
mented mitochondria have been reported for many HD cell
models and patients over the last decades, recent studies
link this observation to GTPase dynamin related protein-1
(DRP-1). DRP-1is one of the shaping proteins which regulate
mitochondrial fission and fusion. Costa et al. [294] described
a higher basal activity of calcineurin which phosphorylates
DRP-1 and thereby increases its activity and translocation to
mitochondria thus leading to mitochondrial fragmentation
in HD models. A direct interaction between mHtt and Drp-1
and an increased enzymatic activity were also shown in brain
tissue of HD patients and an HD mouse model [295]. Since
the balance between fission and fusion is known to be crucial
for mitochondrial function and since neuronal death caused
by increased mitochondrial fragmentation has been reported
for other neurodegenerative disorders like AD and PD [251],
it seems that a better understanding of this pathway would be
insightful into understanding the mechanisms and possible
therapeutic opportunities in polyglutamine diseases.

1

7. Concluding Remarks

The neurodegenerative disorders belonging to the group of
polyglutamine diseases reviewed here share features such
as an inverse correlation of the CAG length with age at
onset, neurological features as main presentations of the
disease, and an autosomal dominant mode of inheritance.
The polyglutamine expansion in these unrelated proteins
converges them into common pathogenic mechanisms which
can result in corresponding therapeutic interventions. In this
review we describe these pathways and possible points of
therapeutic entry. First, it is possible to target the stability
and conversion of the expanded protein by enhancing protein
refolding and degradation or preventing proteolytic cleavage
and creation of the toxic fragment. Another option is to
decrease the ability of the protein to reach the site of toxicity
by altering its ability to translocate between the nucleus
and cytoplasm. Enhancing the lysosomal and proteasomal
degradation and facilitating autophagic aggregate clearance
are exciting current prospects for therapy. Also, modifying
the pathways of aggregation remains a viable therapeutic
approach as does facilitating mitochondrial health and func-
tion. Overall, the field of polyglutamine disease offers many
possibilities for disease intervention (Figure 1), although no
current therapy is available.
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